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9000 Gent, Belgium 
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Abstract. The relativistic equations of motion for a charged particle in interaction with a 
plane electromagnetic wave with arbitrary amplitude are solved rigorously both in terms of 
the co-moving time and the inertial time. The special case of an harmonic wave is 
considered in detail and a discussion is given concerning the radiated energy and the 
radiation reaction. 

1. Introduction 

In the last decade the problem of the relativistic interaction of free electrons with plane 
electromagnetic waves has been extensively discussed (Sarachik and Schappert 1970 
and references contained therein). The reason for this interest has been the develop- 
ment of high-power optical lasers which can produce large field intensities. Recently 
(Kupersztych 1976) the same problem was studied from the point of view of Lorentz 
transformations. In this paper we analyse the motion both in terms of the proper time 
and inertial time, generalizing previous work (Sanderson 1966). In § 2 the general 
solution for the motion of a free electron interacting with a plane electromagnetic wave 
with an arbitrary amplitude is obtained. In 0 3 the example of the harmonic wave is 
worked out in detail. A short discussion of the problem of radiation reaction is given in 
0 4. 

2. General solution with arbitrary wave amplitude 

Let us first introduce a suitable system of coordinates. In formulating the equations of 
motion of the particle under study, the proper time T will be used as a parameter. For 
reasons of simplicity, we choose the origin of the rectangular Cartesian frame of 
reference O x y z  at the spatial position occupied by the particle at the instant T = 0. The 
moment at which the particle passes through 0 is taken as origin for the time-measuring 
device of the inertial observer at rest in O x y z .  Further, the positive axis Ox is chosen in 
the direction of propagation of the plane electromagnetic wave with which the particle 
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interacts. Finally, the positive axis Oy is taken in such a way that in the Coulomb gauge 
this wave can be represented by the vector potential 

A = A ( x - c t ) l , .  (1) 
We can describe the electromagnetic field by means of 

The equations of motion for the charged particle with rest mass m and electric charge e 
in interaction with the plane wave are 

e .aA mf = - y - ,  
c ax 

mi’ = 0, ( 3 c )  

where a dot means differentiation with respect to the proper time 7. The inertial time t 
and the proper time T are related by 

(4) 

The complete formulation of the problem requires the specification of the initial 
velocity o(0) and initial position. In the above convention, we have at T = 0: 

(5 )  xo = y o  = 20 = to = 0. 

The potential function A appearing in (1) is only determined apart from an additive 
constant. Nothing prevents us from choosing this constant in such a way that A (0) = 0.  

Let us define the momentum n of the system by 

n = m i  + ( e / c ) A .  

From equations (3b, c )  it follows that wy and .rr, are constants of the motion. Taking 
into account the initial conditions, this can be expressed by: 

e A  
mc 

y =yo  --, 

i =io. (7) 
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Equation (6) enables us to rewrite equations (3a, d )  as 

Combined with equation ( l ) ,  we have x - c t =  0 from which it follows that 

x - ct = -am, 

in which equation ( 5 )  was taken into account and where a = io- c-'xo( > 0). This result 
makes A purely a function of T, and the equations (8)-(9) may be rewritten as: 

.. 1 d eA * 
2ac dr(-&+yo) ' 

x = - -  

After one integration, we find: 

eA 

ci = cto+zac[ . 1  ( --&+y0)2-y;]. eA 

Equations (6),  (7), (10) and (11) may be integrated once more if the function A is 
known. For a periodic A -function with period 2?r/ao, i.e., 

m 

n = l  
A = ao+ 1 (a, cos nawr + bn sin nawr), 

m where a, = - Zn= an by virtue of A (0) = 0, it is possible, at least in principle, to express 
x ,  y ,  z and T by means of series expansions in terms of the inertial time t. Hereby, a new 
period 2?r/w* appears. Indeed, the integration of (11) yields 

where f is a periodic function with period 2 ~ / a w .  Solving for T gives 

w* 

ao 
7 = - t + g ( t )  

where g is some periodic function with period 2?r/o* . U* is given by 

' eyo e2  1 "  - 1  

o * = a w  I r o - - ~ a 0 + ~ ( a : + -  amc 
2 n = l  ( a i + b : ) ) ]  

with 
2 n / a w  awl A 2 d r .  ao=- a i + -  ( a i + b i ) = -  A dr, 

1 "  271/4w 

2 n = l  2.rr 0 227 0 
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3. Example of the harmonic wave 

As an example, we consider the case of A being simply a sinusoidal function: 

A = --sinw(t-Z), cBo 
w 

in which Bo denotes the magnetic field strength in x = 0 at the time t = 0. The exact 
expressions for x ,  y ,  z and t are easy to calculate in terms of 7. We find: 

9 (12a) 
sin 2awr) (fl) 1 -cos awr +- - 

2 a o  au 

1-cosawr 
y = y o r + c  - 

( w )  aw 

where 
magnetic field of strength Bo. In the non-relativistic limit a + 1, T+ t, 
solution reduces (in first order of l / c )  to: 

= eBo/mc denotes the cyclotron frequency corresponding to a uniform 
w, the 

y =v,(O)r+c(;)  n 1-coswt 
7 

w 

z = v,(O)t. 

Sanderson (1966) has obtained a similar result but with different initial conditions 

In the relativistic case, the inversion of the formula (12d) gives rise to the new period 
(u(0) = 0). 

2?r/w* with 

w* = aw[ i0+&(32]-1 = aw[ a +G+i (c )2 ] -1 ,  c 4a w 

The coefficients in the Fourier series expansions of 7, x ,  y and z can easily be written as 
integrals over the period 21r/w*. In the special case yo = 0, these integrals can be 
evaluated in terms of known functions. Indeed, the inversion of (12d) is then equivalent 
to the expansion of the excentric anomaly E in terms of the mean anomaly M of the 
Kepler problem. When yo = 0, equation (12d) may be rewritten in the form 

where 
M = E - e s i n E ,  

M =  2w*t, E = 2aw7, 

Making use of a known result (Watson 1944), we obtain directly: 

U*  l " 2  
a w  2 a o n = 1 n  

r=-t+- -Jn(ne)sin2nw*t. 
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Proceeding in the same way, we find for x ,  y and z: 

4. Radiated energy and radiation reaction 

The instantaneous radiated energy of the particle is, using Larmor’s formula (Jackson 
1962): 

For the example of 0 3, equation (1 3) yields 

The process can also be understood as the scattering of the incident wave by an electron: 
the coefficients of the Fourier series in equation (14) are proportional to the classical 
probability amplitude for the n-photon process. From the viewpoint of scattering the 
particle itself does not exhibit any essential radiation damping effect. This can easily be 
seen in the non-relativistic limit. The equations of motion including radiation damping 
can then be approximated by 

mi: - mTr = Fe,,, (15) 

where T= 2e2/3mc3 and where Cl<< w << T‘. In this approximation Fext can be 
considered as independent of r. Then, the physically acceptable solution of equation 
(15) reads: 

er/T 

mT r = - e-r”TFext(t’) dt‘ 

Equation (16) gives no dpmping for a periodic external force. If the incoming wave is 
exponentially damped, equation (16) does not lead to a supplementary damping but the 
damping coefficient is the same as that of the incident wave. To first order of T, the 
motion of the particle is only affected by phase shifts, if the incoming wave is undamped. 
This means that the energy of the outgoing wave is totally extracted from the incident 
wave in the limits considered; the particle causes the scattering of the radiation without 
being damped itself. This apparent paradox can be explained by making the energy 
balance. Carrying out scalar multiplication by i on both sides of (15) and integrating 
between two arbitrary moments t ,  and t2 gives: 
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The first term on the right-hand side can be set equal to zero by proper choice of f l  and 
tz. In the absence of the external force equation (17) then necessarily leads to the 
decrease of the kinetic energy. However, in the presence of the external force, the 
kinetic energy supplemented by the radiation energy is fully compensated by the 
potential energy to fist order in wT, as can easily be checked on the example of Q 3. 
However, for high intensity laser radiation Cl/w can become considerably larger than 
unity. In this case the radiation reaction force can only be neglected if 

Ci2T<< 0. (18) 

Even if this effect is small, it may, over sufficiently long time, induce an alteration to the 
electrons' motion (Sanderson 1965). 

5. Conclusion 

The problem of the motion of a charged particle in a plane electromagnetic wave with 
an arbitrary amplitude is solved in terms of the proper time and the inertial time of the 
particle. The frequency of the motion 271'/w* is related to the frequency 2 m / o  of the 
incoming wave by a Doppler shift. The special case for an incoming harmonic 
plane wave is considered in detail. For simple initial conditions (i.e. y ( O ) = O )  the 
solution is explicitly obtained in the form of a series expansion of harmonics with 
frequency no* (n = 1 , 2 , 3 , .  . . 1. The problem of radiation reaction is briefly discus- 
sed: since the process can be understood as the scattering of the incident wave by the 
charged particle there is no essential damping effect to be observed in the non- 
relativistic limit. 
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